Faecal microbiota transplantation (FMT) — the transfer of lower intestinal fluids and microbes from one individual to another — is sometimes used to treat inflammatory gut diseases, including ulcerative colitis and bacterial infections. Although a form of it was first recorded in 4th century China, it was introduced to western medicine in the 1950s. In the last two decades, it has steadily gained prominence.
A team of researchers led by the Bork group at EMBL Heidelberg, along with their collaborators in the Netherlands and Australia, has now used this unusual medical procedure to ask a fascinating question — what happens when two gut microbiomes mix together?
The answer could hold clues to better therapeutic strategies for gut disorders as well as a richer understanding of how microbial species behave and interact in complex natural ecosystems.
Transplanting microbes
Although clinical trials have demonstrated that FMTs can effectively treat certain gut disorders, their mode of action remains unclear. Some hypothesise the gut microbiomes of donors have beneficial properties that help return the recipient’s gut to a healthy state. However, this has never been systematically studied.
“The ‘super donor’ hypothesis is widely held among practitioners: it postulates that finding ‘good’ donors is essential to the clinical success of an FMT and that a good donor will work for many different patients,” said Sebastian Schmidt, one of the first authors of a new study published in Nature Medicine.
However, using clinical and metagenomics data from over 300 FMTs, the researchers discovered that it’s probably the recipient and not the donor that primarily determines the microbial mix resulting from this procedure. This builds upon a 2016 study from the Bork group that showed that microbial strains from a donor can coexist with those from a recipient with metabolic syndrome.
Source: Read Full Article