When you’re cooking or cleaning inside your home, what chemicals are you breathing, and are they potentially harmful? Colorado State University chemists have given us a solid start on the answer.
A large, collaborative research experiment that attempted to map the airborne chemistry of a typical home took place in 2018 and was co-led by Delphine Farmer, associate professor in the Department of Chemistry at CSU. The experiment, called HOMEChem, brought 60 scientists from 13 universities to a test house at the University of Texas at Austin to perform typical home activities like cooking and cleaning and to use sophisticated instrumentation to document the chemistry that resulted. The effort, called HOMEChem, was supported by the Sloan Foundation.
In a new paper in Environmental Science & Technology, Farmer’s team at CSU has taken the massive amounts of data collected during HOMEChem and sorted it out by health effects. They identified how many compounds they observed that are known human toxins, or, based on newer Environmental Protection Agency models, predicted to be likely human toxins. Most such compounds are emitted in low quantities and can be cleared through proper ventilation. But the health impacts of both the individual compounds and their complex mixtures indoors are not well understood by scientists.
The bottom line? “Indoor air isn’t going to kill you, but we do find that indoor air has many more – and often times at higher levels — known and potential air toxics versus outdoors, particularly when you’re cooking,” said Farmer, an atmospheric chemist who, before this experiment, had spent the majority of her career measuring more “traditional,” outdoor air toxics.
Data management
The feat of data management for meaningfully connecting the data from HOMEChem to toxins databases was led by co-author Anna Hodshire, a former CSU postdoctoral researcher with skill in analyzing data from atmospheric instrumentation.
Source: Read Full Article